## A Reflection on the Clustering in Corpus Linguistics

Akitaka Yamada, Georgetown University ay314@georgetown.edu

## 1 Introduction

Topic: to discuss the metric selection in corpus linguistics.
In corpus linguistics, we often classify competing expressions.
Given the following barplots, for example, we sometimes ask which expression is the closest to the expression A.

Expression A


[^0]Expression B


Expression C


Expression D



## 2 Hierarchical Clustering

## 2 Hierarchical agglomerative clustering analysis



Hierarchical agglomerative clustering is a frequently used explorative statistical method in corpus linguistics (Baayen 2008; Gries 2013; etc.).
Metric selection plays a pivotal role in this analysis.


## 2 Hierarchical agglomerative clustering analysis

## Question:

How do we measure the distance or the similarity among barplots?

## An important caveat:

1. No absolute answer.
2. A choice of one measure over the others reflects the researcher's subjective attitude/perspective toward the data and the analysis.

## Nevertheless:

Considering the nature of the corpus data, we can, at least, say the following statements:
Main claims: (i) our familiar Euclidean distance is not the only choice; and, in most cases, not the best choice.
(ii) The Hellinger distance is an underdiscussed but promising alternative.
(iii) The information lost in clustering can be recovered by a good visualization.

## 3 Information Geometry

## 3 Information geometry <br> Distribution of verbs



As a warm-up discussion, let us consider the distributional property of the prob. distributions!

## Example:

1. We are interested in the use of Present Perfect.
2. How is it different from the Past and the Present?

Suppose you have searched for these three forms, using COCA.
3. As a result, you have got the following relative frequencies:



4. In order to understand the nature of the Euclidean distance, let us put these verbs in the three dimensional space!

## 3 Information geometry

## Distribution of verbs

Where are those verbs found in COCA corpus?

1. In the case of the verb achieve $(0.4,0.3,0.3)$ :





## 3 Information geometry

## Distribution of verbs

Where are those verbs found in COCA corpus?

1. In the case of the verb achieve ( $0.4,0.3,0.3$ ):
2. Can verbs distribute anywhere in this 3D space?

No, verbs cannot appear at random!
They can only be found within the shaded triangular region
because of the following constraints:

$$
p_{i} \geq 0
$$

$$
\sum p_{i}=1
$$



## 3 Information geometry

## Distribution of verbs

Where are those verbs found in COCA corpus?

1. In the case of the verb achieve ( $0.4,0.3,0.3$ ):
2. Can verbs distribute anywhere in this 3D space?

No, verbs cannot appear at random!
They can only be found within the shaded triangular region
because of the following constraints:

$$
p_{i} \geq 0 \quad \sum p_{i}=1
$$

3. 266 most frequently used English verbs in COCA are plotted in this region: Present/ ( $1,0,0$ )


4 the Euclidean distance and the Hellinger distance

## 4 Distance between the Euclidean distance and our intuition

The Euclidean distance
How do we measure the distance between the two dots?

1. Definition:

$$
\mathrm{D}_{\mathrm{E}}(\boldsymbol{x}, \boldsymbol{y})=\sqrt{\sum_{j}\left|x_{j}-y_{j}\right|^{2}}
$$

2. Geometrical interpretation: the straight line


## 4 Distance between the Euclidean

 distance and our intuitionDependence on the dominant dimension
The Euclidean distance depends too much on the most dominant dimension:

Example: the difference between smile and announce

1. Preponderance of the past tense conceals the otherwise detectable contrast.

2. We want to say they are quite different in other dimensions.
3. which is totally ignored by the Euclidean distance, because of the constraint $\sum p_{i}=1$.


## 4 Distance between the Euclidean

 distance and our intuitionDependence on the dominant dimension
The Euclidean distance depends too much on the most dominant dimension:

Example: the difference between smile and announce

1. Preponderance of the past tense conceals the otherwise detectable contrast.
2. We want to say they are quite different in


## The meaning of 0.05 distance is different!

 other dimensions.3. which is totally ignored by the Euclidean distance, because of the constraint $\sum p_{i}=1$.


## 4 Distance between the Euclidean

distance and our intuition

## The Hellinger distance (philosophy)

The Euclidean distance depends too much on the most dominant dimension:
$\Rightarrow$ Let's listen to the voice of minorities!!

1. What we want: putting more emphasis on the minorities


$$
\sqrt{0.9}=0.95
$$

$0.22 u p$ !



2. Transform each bar s.t., the lower bar gets relatively bigger:
3. One of such convex technique is to take the sqrt of each height. BEFORE

$$
\sqrt{0.1}=0.32
$$




## 5 Example 1: English Tense and Aspect system

## 5 Example 1: Tense and Aspect in English

Let us see how the Hellinger distance disagrees with the Euclidean distance.

1. Dendrogram does not help us a lot.
2. Scatterplot does.

Left: Euclidean
Past


Right: Hellinger Past


Present Perfect


## 5 Example 1: Tense and Aspect in English

Let us see how the Hellinger distance disagrees with the Euclidean distance.

1. Dendrogram does not help us a lot.
2. Scatterplot does.
3. This is why the Euclidean distance is not appealing in corpus linguistics.
4. Important caveat:

The Euclidean distance does give us a perspective.
5. Our choice reflects our subjective attitude/perspective toward the data.
6. It is good to compare results!

Left: Euclidean


Euclidean

|  | Euclidean | Hellinger |  |
| :--- | :--- | :--- | :--- |
| Commonality | As for the extreme cases, they have similar opinions. |  |  |
| Emphasis | Dominant dimension |  | Dominant \& minor dimension |
| Classification | (i) Present (ii) Past (i) Present (ii) Past <br> (iii) Neither  (iii) Present Perfect |  |  |
| Interpretability | Not easy | Quite intuitive |  |

Right: Hellinger


## 5 Example 1: Tense and Aspect in English

## Multifaceted thinking

1. Robustness:

Classification that both approaches agree on Prototypes that hate PP.

Example:

(1) a. when good things happen, we are certain fortune has smiled on us.
b. Though his expression is serious now, the crinkles at the corners of his eyes make me think he has smiled a lot. He looks kind.

Left: Euclidean


Right: Hellinger
Past

|  | Euclidean | Hellinger |
| :---: | :---: | :---: |
| Commonality | As for the extreme cases, they have similar opinions. |  |
| Emphasis | Dominant dimension | Dominant \& minor dimension |
| Classification | (i) Present <br> (ii) Past <br> (iii) Neither | (i) Present <br> (ii) Past <br> (iii) Present Perfect |
| Interpretability | Not easy | Quite intuitive |

## 5 Example 1: Tense and Aspect in English

Multifaceted thinking
Left: Euclidean
Past

1. Robustness:

Classification that both approaches agree. Prototypes that hate PP.

| announce | lay | scream |
| :--- | :--- | :--- |
| cry | lean | shake |
| hit | nod | smile |
| laugh | say | stare |


2. Classification w.r.t. three T/A system: Prototypes that love PP. accumulate demonstrate expand achieve develop improve change double increase contribute evolve

Perfect

Right: Hellinger
Past


Present
Present

Perfect

Euclidean
Hellinger
Commonality As for the extreme cases, they have similar opinions.
Emphasis Dominant dimension Dominant \& minor dimension

Classification (i) Present (ii) Past (i) Present (ii) Past
(iii) Neither
(iii) Present Perfect

## 5 Example 1: Tense and Aspect in English

Multifaceted thinking
Left: Euclidean
Past

1. Robustness:

Classification that both approaches agree. Prototypes that hate PP.

| announce | lay | scream |
| :--- | :--- | :--- |
| cry | lean | shake |
| hit | nod | smile |
| laugh | say | stare |



Right: Hellinger
Past
2. Classification w.r.t. three T/A syste

Prototypes that love PP. accumulate demonstrate expand achieve develop improve change double increase contribute evolve result


Present

Present
Perfect

## Previous theories

(Portner 2011)
(A) Indefinite past theories
(B) Perfect state theories
(C) Extended now theories
succeed

## Example 2

So far, we have seen an example in which we only have three dimensions (= past, present and pp).
$\longrightarrow$ What about the data with higher dimensions?

Example 2 is a case-study in which we have 112 dimensions.

## Take-home lessons

1) Good visualization helps us understand the distribution.
2) If compared with the Hellinger distance, the Euclidean distance gives us a result in which the highest dimension is appreciated too much.
3) Comparison between the two metrics gives us a better understanding of the data.

Questions are welcome! But let me first conclude this talk...

## Conclusion

## In this presentation:

I have demonstrated
(a) how we compare the results from different metrics
and
(b) how we should connect the results with the findings in the theoretical linguistics.

In so doing, ...
Main claims: (i) our familiar Euclidean distance is not the only choice; and, in most cases, not the best choice.
(ii) The Hellinger distance is an underdiscussed but promising alternative.
(iii) The information lost in clustering can be recovered by a good visualization.
$\longrightarrow$ Good comparison of the matrices/visualization
$\longrightarrow$ Better understanding of the data!

Thank you very much for listening!!


[^0]:    

