Bayesian Dynamic Pragmatics:

Pragmatics and semantics of Japanese politeness encodings

Akitaka Yamada Workshop on modality and related matters Date: 2019/9/19 Location: Second Floor, NINJAL

0. Introduction of myself

2008-2014

- Univ. of Tokyo
- Georgetown Univ. 2014-2019

Research interests:

- Theoretical Linguistics:

✓ 1. Semantics/pragmatics:	Primary domain		
2. Morphology:	Sometimes		
3. Syntax:	Sometimes		

- Usage-based studies
 - 1. Corpus-linguistics: Almost always
 - 2. Experimental studies: I'd love to but not yet.

✓ 3. Statistics: Yes, I do!

Dissertation:

- Thesis advisor: Paul H. Portner
- Committee members: Satoshi Tomioka
 Ruth Kramer
 Amir Zeldes
- Topic: Japanese addressee-honorifics

Today's topic:

- Bayesian dynamic pragmatics

What is this?

What the hell is this?

Content and force

Content	Force					
	Sentential force	Illocutionary (utterance) force				
	meanings associated with sentence types	meanings associated with social acts				
	(e.g., declaratives and interrogatives)	(e.g., promise, wish, entreaty)				

(2) a. Soldiers, march! [COMMAND] b. Have some beer! [OFFER] c. Help me! [ENTREATY]

Expressiveness

Figure 4.1: Classification of meanings proposed by Potts (2003)

a. Referent honorifics (Japanese)

Tomioka-sensei-ga irassyar-u.

Tomioka-teacher-NOM come.HONs-PRS

- '(i) Prof. Tomioka will come;
- (ii) The speaker respects Prof. Tomioka.'
- b. Expressive attributive adjectives (Cruse 1986:272; Potts 2003: 205) Shut that blasted window!
- c. Particles (German; Krazter 2004)

Duhastja'nLoch imArmel.YouhavePRT aholein.DETsleeve'(i)There is a hole in your sleeve;

- (ii) The proposition in (i) is well-known.'
- d. Epithets (Lebanese Arabic; Aoun et al. 2001:385; Potts 2003: 3)

saami ha-l-mazduub nəse l-mawSad Sami 3-the-idiot.SM forgot.3.SM the-appointment 'Sami, this idiot, forgot the appointment.'

e. Slurs (Cepollaro 2015: 36) Bianca is a **wop**.

Meaning (1) Interval-based approach

[A **damn** teacher] came in.

Meaning (1) Interval-based approach Example: McCready (2014, 2019)

Figure 4 Context updates in McCready (2014): the context-update condition.

Context $c^{old} = \langle dc_a, dc_b, tdl, qs, \dots, expr \rangle$ $\left\{ \begin{array}{l} < a, [0.3, 0.9], b >, \\ < a, [0.4, 0.9], c >, \\ \vdots \end{array} \right\}$ < a, [0, 5, 0, 6], c >Context update C + Hon(S) = C' $\begin{bmatrix} C, \\ \frac{3 \times \mathcal{R}_{lower} + Hon(S)}{4}, \frac{3 \times \mathcal{R}_{upper} + Hon(S)}{4} \end{bmatrix},$ if $C \subseteq Hon(S)$ otherwise $c^{new} = \langle dc_a, dc_b, tdl, qs, \dots, expr^* \rangle$ $\left\{ \begin{array}{l} < a, [0.3, 0.9], b >, \\ < a, [0.5, 0.6], c > , \\ \vdots \end{array} \right\}$

A simulation study

Figure 5 Simulation results (I).

Utterance Intervals			Potts (2007)		McCeady (2014)	
		[0,	1],[0,	1]
1[0.7629,	0.8061], [0.7629,	0.9066], [0.1907,	0.9428]
2[0.795,	0.8615], [0.795,	0.8003],[0.3418,	0.9457]
3[0.8703,	0.8853], [0.795,	0.8003], [0.4739,	0.9512]
4 [0.7121,	0.7342], [0.795,	0.8003], [0.5335,	0.9038]
5 [0.6823,	0.787], [0.795,	0.8003], [0.5707,	0.8631]
6 [0.9899,	0.9938], [0.795,	0.8003], [0.6755,	0.8959]
7 [0.7119,	0.9199], [0.795,	0.8003],[0.6846,	0.8801]
8 [0.619,	0.729], [0.795,	0.8003], [0.6682,	0.8773]
9[0.87,	0.902], [0.795,	0.8003], [0.7187,	0.8786]
10 [0.5962,	0.8096], [0.795,	0.8003], [0.6881,	0.8569]

2 Contribution of politeness markers

2. Contribution of politeness markers

Obs 1. Cummulative effect

Cumulative effect: The honorific attitude depends not only on the honorific meaning of the most recent utterance but also on the utterances produced in the prior context.

Ore zyugyoo-nante de-taku nai-yo. I class-TOP attend-want NEG-SFP

'I do not want to attend the class.'

Kagaku-no sensei-no hanasi tumannai-si. chemistry-NOM teacher-GEN speech boring-SFP 'What the chemistry teacher teaches us is boring.'

> *Geemu si-te r-u hoo-ga zutto masi.* game do-CV PRG-PRS way-NOM far better 'Playing video game is far better.'

> > *Ore ie-ni kaeri-mas-u.* I home-to return-HONA-PRS 'I will go home.'

Even though the last word we hear is *-mas*, we do not think the speaker has `respect' to the addressee.

-> This is because we also know what **the past states** were like.

 $C^{1} > C^{2}$

 $\mathcal{C}^1 > \mathcal{C}^2 > \mathcal{C}^3$

 $C^1 > C^2 > C^3 > C^4$ Local update $C^1 > C^2 > C^3 > C^4 > C^5$ Somehow remember what they were like.

2. Contribution of politeness markers

Obs 1. Cummulative effect

Cumulative effect: The honorific attitude depends not only on the honorific meaning of the most recent utterance but also on the utterances produced in the prior context.

Scenario A: Previously, the speaker A had produced sentences with low range of intervals, such as [.2, .5], [.3, .4], ..., and [.2, .3]. However, at one moment, he shifts to a high register and the context interval of the immediate context is set to [.75, .8], for example. This scenario mimics the situation where the speaker A is a dissolute student and the addressee is his homeroom teacher. He usually does not use addressee-honorific markers. But, one day, for some reason, he talked to the teacher in a very polite manner, which enhanced the register to a very polite range. Even though the last word we hear is *-mas*, we do not think the speaker has `respect' to the addressee.

-> This is because we also know what **the past states** were like.

Scenario B: Previously, the speaker A had produced sentences with a relatively high range of intervals, such as [.9, 1.0], [.8, .9], ..., and [.7, 1.0]. And now the context interval is set to [.75, .8] This mimics the situation where the speaker is a very diligent student who has shown very high respect to the addressee, his homeroom teacher. But one day, he slightly changed his respect-paying manner and shifted from a very high respect to a mode in which he mildly respects the teacher but not too high, for example, to show that he feels bonded with the teacher.

2. Contribution of politeness markers

Obs 2. Learnability

Learnability: The denotation of addressee-honorific markers must be uniquely identified.

Even though the last word we hear is *-mas*, we do not think the speaker has `respect' to the addressee.

-> This is because we also know what **the past states** were like.

< a, [0.5, 0.9], b >

- < *a*, [0.51, 0.9], *b* >
- < a, [0.511, 0.9], b >
- < *a*, [0. 5, 0. 89], *b* >
- < *a*, [0. 5, 0. 899], *b* >
- < a, [0.5, 0.899], b >
- < *a*, [0. 5, 0. 901], *b* >

Dynamic pragmatics to machine learning

- 1. Beyond the expressive elements, there are no comparable language phenomena. Right now, very few chances to use.
- 2. Computational semantics

Thank you for your listening!

